Iteradores

VocĂȘ pode implementar o trait Iterator em seus prĂłprios tipos:

struct Fibonacci {
    curr: u32,
    next: u32,
}

impl Iterator for Fibonacci {
    type Item = u32;

    fn next(&mut self) -> Option<Self::Item> {
        let new_next = self.curr + self.next;
        self.curr = self.next;
        self.next = new_next;
        Some(self.curr)
    }
}

fn main() {
    let fib = Fibonacci { curr: 0, next: 1 };
    for (i, n) in fib.enumerate().take(5) {
        println!("fib({i}): {n}");
    }
}
  • The Iterator trait implements many common functional programming operations over collections (e.g. map, filter, reduce, etc). This is the trait where you can find all the documentation about them. In Rust these functions should produce the code as efficient as equivalent imperative implementations.

  • IntoIterator is the trait that makes for loops work. It is implemented by collection types such as Vec<T> and references to them such as &Vec<T> and &[T]. Ranges also implement it. This is why you can iterate over a vector with for i in some_vec { .. } but some_vec.next() doesn’t exist.