Lifetime Annotations
A reference has a lifetime, which must not “outlive” the value it refers to. This is verified by the borrow checker.
The lifetime can be implicit - this is what we have seen so far. Lifetimes can
also be explicit: &'a Point
, &'document str
. Lifetimes start with '
and
'a
is a typical default name. Read &'a Point
as “a borrowed Point
which is
valid for at least the lifetime a
”.
Lifetimes are always inferred by the compiler: you cannot assign a lifetime yourself. Explicit lifetime annotations create constraints where there is ambiguity; the compiler verifies that there is a valid solution.
Lifetimes become more complicated when considering passing values to and returning values from functions.
#[derive(Debug)] struct Point(i32, i32); fn left_most(p1: &Point, p2: &Point) -> &Point { if p1.0 < p2.0 { p1 } else { p2 } } fn main() { let p1: Point = Point(10, 10); let p2: Point = Point(20, 20); let p3 = left_most(&p1, &p2); // What is the lifetime of p3? println!("p3: {p3:?}"); }
In this example, the the compiler does not know what lifetime to infer for p3
.
Looking inside the function body shows that it can only safely assume that
p3
’s lifetime is the shorter of p1
and p2
. But just like types, Rust
requires explicit annotations of lifetimes on function arguments and return
values.
Add 'a
appropriately to left_most
:
fn left_most<'a>(p1: &'a Point, p2: &'a Point) -> &'a Point {
This says, “given p1 and p2 which both outlive 'a
, the return value lives for
at least 'a
.
In common cases, lifetimes can be elided, as described on the next slide.