Exercise: Binary Tree
A binary tree is a tree-type data structure where every node has two children (left and right). We will create a tree where each node stores a value. For a given node N, all nodes in a N’s left subtree contain smaller values, and all nodes in N’s right subtree will contain larger values.
Implement the following types, so that the given tests pass.
Extra Credit: implement an iterator over a binary tree that returns the values in order.
/// A node in the binary tree. #[derive(Debug)] struct Node<T: Ord> { value: T, left: Subtree<T>, right: Subtree<T>, } /// A possibly-empty subtree. #[derive(Debug)] struct Subtree<T: Ord>(Option<Box<Node<T>>>); /// A container storing a set of values, using a binary tree. /// /// If the same value is added multiple times, it is only stored once. #[derive(Debug)] pub struct BinaryTree<T: Ord> { root: Subtree<T>, } // Implement `new`, `insert`, `len`, and `has`. #[cfg(test)] mod tests { use super::*; #[test] fn len() { let mut tree = BinaryTree::new(); assert_eq!(tree.len(), 0); tree.insert(2); assert_eq!(tree.len(), 1); tree.insert(1); assert_eq!(tree.len(), 2); tree.insert(2); // not a unique item assert_eq!(tree.len(), 2); } #[test] fn has() { let mut tree = BinaryTree::new(); fn check_has(tree: &BinaryTree<i32>, exp: &[bool]) { let got: Vec<bool> = (0..exp.len()).map(|i| tree.has(&(i as i32))).collect(); assert_eq!(&got, exp); } check_has(&tree, &[false, false, false, false, false]); tree.insert(0); check_has(&tree, &[true, false, false, false, false]); tree.insert(4); check_has(&tree, &[true, false, false, false, true]); tree.insert(4); check_has(&tree, &[true, false, false, false, true]); tree.insert(3); check_has(&tree, &[true, false, false, true, true]); } #[test] fn unbalanced() { let mut tree = BinaryTree::new(); for i in 0..100 { tree.insert(i); } assert_eq!(tree.len(), 100); assert!(tree.has(&50)); } }